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Abstract—To blindly evaluate the visual quality of image is
of great importance in many image processing and computer
vision applications. In this paper, we develop a novel training-
free no-reference (NR) quality metric (QM) based on a unified
brain theory, namely, free energy principle. The free energy
principle tells that there always exists a difference between
an input true visual signal and its processed one by human
brain. The difference encompasses the “surprising” information
between the real and processed signals. This difference has been
found to be highly related to visual quality and attention. More
specifically, given a distorted image signal, we first compute
the aforesaid difference to approximate its visual quality and
saliency via a semi-parametric method that is constructed by
combining bilateral filter and auto-regression model. Afterwards,
the computed visual saliency and a new natural scene statistic
(NSS) model are used for modification to infer the final visual
quality score. Extensive experiments are conducted on popular
natural scene image databases and a recently released screen
content image database for performance comparison. Results
have proved the effectiveness of the proposed blind quality
measure compared with classical and state-of-the-art full- and
no-reference QMs.

I. INTRODUCTION

With the widespread utility of digital images in computer
vision and multimedia signal processing communities, visual
quality has becoming increasingly important. However, images
are subject to a wide variety of distortions and artifacts during
compression, enhancement [1], [2], tone mapping [3], etc, and
thus it is desirable to find a reliable technique for controlling
and improving the image quality [4]. Image quality assessment
(IQA), due to its consistency with the human visual system
(HVS), can be properly used to solve this problem.

From the viewpoint of target, IQA models are basically
separately into two categories, i.e. subjective assessment and
objective assessment. The former one is decisive since human
viewers are the ultimate users, but it is usually laborious,
time-consuming, expensive. So it is not suitable for real-time
applications. Hence, objective IQA has aroused more and more
attention from researchers towards predicting subjective rat-
ings with explicitly designed mathematical models. According
to the accessibility of the reference image, objective IQA
algorithms can be further classified into full-reference (FR),
reduced-reference (RR), and no-reference (NR) methods. FR

IQA models compare a distorted image with its associated
reference one [5], [6], [7], [8]. This kind of algorithms work
under the condition that reference image can be completely
obtained. Instead of using the whole reference image, limited
effective features are used to quantify the distortion and
evaluate the quality. This type of methods is called RR IQA
[9], [10].

In most cases, the reference image (complete or partial)
may not be available, so FR and RR IQA metrics are limited
by the dependence of the reference image in practical appli-
cations. With this view, blind/NR IQA metrics without the
help of the original references are highly expected. During
the past decade, a large number of blind quality measures
have been proposed. One type of NR models operates under
the assumption that the degradation type is known beforehand.
Typical distortion-specific quality measures are devoted to
blockiness [11], [12], sharpness/blurriness [13], [14], [15],
[16], [17], [18], noise [19], contrast adjustment [20], etc. The
other type of general-purpose blind IQA metrics concentrate
on evaluating various types of distortions simultaneously.

With the development of Internet, a huge amount of digital
photographs are shared and transmitted everyday. Faithful
IQA metrics play an important role in processing of digital
photographs. It can be assumed that the most commonly
occurring distortions on digital photographs are due to blur
and presence of noise. Image noise may appear in the digital
photographs due to several reasons. Such as, one reason
would be a high International Organization for Standardization
(ISO) setting on your camera. Graininess will also be more
apparent when camera captures more light to illuminate the
scene. Another condition is caused by thermal noise. Image
can suffer from the image sensor noise. Long exposures
increase the risk of being contaminated by noise too, since
the sensor is kept open to gather more image data along with
electrical noise. The causes of image blurring are multifold,
such as photographing with long exposures, camera out-of-
focus, target motion, image compression and so on.

Many training-based quality metrics can evaluate image
blurriness and noise, but their regression modules are based
on machine learning tools which are prone to the problem
of overfitting. As for training-free metrics devoted to image
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Fig. 1. A framework of the proposed BQISN measure.

blurriness and noise, they are unable to simultaneously handle
both these two types. Evaluating the quality of both blurry
and noisy images is therefore a meaningful and challenging
research topic in this area. To resolve this issue, we propose
a new effective blind quality index for image sharpness and
noise (BQISN). Our model is based on free energy based brain
theory, which indicates that there constantly exists a difference
between an input image and its processed one by human brain.
This difference contains the “surprising” information between
the input and processed signals, and thus it is reasonable
to be highly connected to visual quality and attention. In
particular, given a distorted image signal, we first compute
the above-mentioned difference to estimate its visual quality
and saliency via a semi-parametric method that is constructed
by combining bilateral filter (BF) and auto-regression (AR)
model. Thereafter, the computed visual saliency and a new
natural scene statistic (NSS) model are used for modification
to yield the final visual quality score.

Compared with the previous works, there are two main
contributions made in this paper: 1) to our knowledge, this
work is the first one blindly evaluating the quality of blurry
and noisy images simultaneously; 2) in contrast to popular FR
IQA methods, distortion-specific blind techniques and state-
of-the-art NR IQA metrics, the substantial high performance
of the proposed method is evaluated on three popular natural
scene image databases and even the recently released screen
content image database.

The rest of this paper is arranged as follows. Section II
first describes the proposed BQISN in detail. In Section III,
comparative studies of our BQISN with classical and recently
proposed competitors are conducted on four popular image
databases [21], [22], [23], [7], confirming the effectiveness of
our IQA method. The concluding remarks are given in section
IV.

II. THE PROPOSED BLIND QUALITY MEASURE

High quality images are increasingly required by Human
viewers at present time. Currently, there are many training-
based quality measures which can evaluate image blurriness

and noise, but their regression modules are based on machine
learning tools which are prone to the problem of overfitting.
As for training-free metrics devoted to image blurriness and
noise, they are unable to simultaneously handle both two types.

As a result, we devote to the training-free quality measure
BQISN which can evaluate image noise and blurriness simul-
taneously via a three-step framework illustrated in Fig. 1. The
first step is to approximate the reference image’s free energy
entropy via the distorted image. The second step utilizes free
energy principle to estimate the distorted image’s saliency and
free energy entropy. At last, free energy entropy of entire
or part of the distorted image and the approximate reference
image’s free energy are fused to derive the overall quality
score. Details are discussed below.

A. Approximate free energy of the reference image

First, we compute the approximate free energy entropy
Fa of the reference image. We adopt the bilateral filtering
[26] to preserve the edge features in this paper. It will be
introduced in the following part, we also use AR model
to simulate the internal generative model in our proposed
BQISN. Although the AR model is effective and simple, it
is sometimes unreliable when encountered image edges due
to the violation of “geometric duality” principle. Hence we
should find strategies to complement AR model for preserving
edge information. Currently, though there are many edge-
preserving filters [36], most of them are iterative and operates
in spatial domain. So it may cause issues of instability and fails
at edges. The bilateral filtering considers geometric closeness
and photometric similarity together. It is simple, non-iterative
and effective for preserving image edge information. The
bilateral filtering model is defined as

y(x) = k−1(x)

∫ ∫
f(δ)g(δ, x)p(f(δ),f(x))dδ (1)

where
k(x) =

∫ ∫
g(δ, x)p(f(δ),f(x))dδ (2)

where y(x) and f(x) denotes a pixel of the output and input
image, g(δ, x) evaluates the geometric closeness between the



pixel at the center x and a nearby point δ, p(f(δ),f(x))
evaluates the photometric similarity between the center x and
a nearby point δ. Thus both domain and range filtering are
considered by the bilateral filtering. We define the bilateral
filtering as

yn =∆k(yn)β + εn (3)

where yn is a pixel of the target image, ∆k(yn) defines k
member neighborhood vector of yn, β = (β1, β2, ..., βk)

T is
a vector of bilateral filtering coefficients, and εn is the error
term between the predictions and the input visual signals. Then
free energy between the input signal yn and the filtered one
∆k(yn)β can be calculated. Please refer to [9] for more details
about free energy entropy computation.

Since the reference image is not available, we propose
to approximate the reference image’s free energy using the
distorted image. We down-sample the distorted image to one
eighth of its original resolution. The down-sampled image
is then taken as the target image yn and the free energy is
computed as F ′a. We believe that a high degree of down-
sampling can significantly weaken the influence of various
kinds of distortions, and the left information is mainly related
to the image content rather than distortions. So we can use the
free energy entropy of the distorted image to approximate the
free energy entropy of corresponding down-sampled reference
image. Then a new natural scene statistic (NSS) model is
used to infer free energy entropy of reference image (Fa)
from the down-sampled one (F ′a). We conduct natural scene
statistic analysis to explore the relationship between Fa and
F ′a. Fig. 2 illustrates the scatter plot of all images from the
Berkeley database [35]. Note that there is an approximate
power relationship between F and F ′. Thus the following
power function model is used to predict Fa from F ′a:

f(F ′) = a · (F ′)b + c (4)

where F ′ denotes free energy of the down-sampled image, and
f(F ′) indicates the estimated free energy of original image;
a, b, c are model parameters, which are determined by curve
fitting using all images from Berkeley database [35]. We fit
the parameters on this database since it has no overlap with
existing IQA databases which will be used as test-beds in later
experiments. Then free energy entropy of the reference image
Fa is approximated as: Fa = f(F ′a).

B. Estimating free energy and saliency of the distorted image

Second, we analyze the distorted image based on human
visual system and visual saliency. According to the recent free
energy principle which works on the assumption that human
cognitive process is decided by an internal generative model
[24], the brain can predict the input scene in a constructive
way. For example, the human visual system via the internal
generative model makes an effort to reduce the uncertain
information of an input visual signal. Therefore, difference
always exists between the brain’s prediction and the input
scene. We believe that this difference is highly related to visual
saliency. And we utilize the linear autoregressive(AR) model

Fig. 2. Scatter plot of free energy entropy of the original image F versus that
of corresponding down-sampled image F ′. Note that there is a approximate
power relationship between F and F ′.

to simulate the generative model to predict an input distorted
image for AR model is simple and effective to describe a varity
of natural scenes [9], [25], [29]. The AR model can be defined
as

yn =∆k(yn)α+ ξn (5)

where yn is a pixel of the distorted image, ∆k(yn) is a
row-vector which includes k nearest neighbors of yn, α =
(α1, α2, ..., αk)

T is a AR parameter vector, and ξn is the error
term between the predictions and the input visual signals.

Because of their respective merits, we compute the free
energy entropy Fb between the input scene and the predicted
one by using the semi-parametric model which combines both
the non-parametric model bilateral filtering and the parametric
model AR. In detail, we use the bilateral filter described by
Eq. (3) and the AR model described in Eq. (5) to predict the
distorted image:

zn = w1∆
k(yn)β + w2∆

k(yn)α (6)

where zn is the predicted image; yn is a pixel of the distorted
image; ∆k(yn)β and ∆k(yn)α are estimated by Eq. (3) and
Eq. (5), respectively; w1, w2 control the relative importance of
two components. Free energy entropy of the distorted image
Fb is then calculated between zn and yn.

In fact, the internal generative model can be approximated
by a probabilistic model, which includes a prior term and
a likelihood term. It is clear that there always exits a gap
between the input signal and the internal generative model’s
prediction. And we believe the gap between the input signal
and the corresponding prediction is highly related to the human
visual perception, and thereby can be utilized for saliency
detection. Visual saliency, which are generally “pop-outs” of
images, thus can be predicted by the local entropy of the
gap. For more details about calculating saliency using free
energy principle, please refer to [25]. Visual saliency helps
us to discriminate between textured and smooth regions of
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Fig. 3. Flowchart of the pooling process. We adopt different pooling strategies
for different distortion types.

the image according to the distortion type, which makes our
model more effective. After saliency detection, we compute the
free energy entropy of the distorted image’s saliency and non-
saliency areas (denoted as Fbs and Fbn , respectively), which
will be fused with Fa and Fb in the following stage.

C. Free energy pooling

At last, we fuse the afore-computed free energy entropy
according to the distortion types. Fig 3 illustrates a flowchart
of the pooling process. We first compare the two free energy
entropy Fb and Fa. According to the compare results, we
adopt different strategies. If Fb is smaller than Fa, it means
that the target image is a blurry one, then we fuse the free
energy entropy of saliency region (Fbs ) and entire image (Fb).
Otherwise, the target image is corrupted by noise, and we
integrate the free energy entropy of non-saliency region (Fbn )
and entire image (Fb). We adopt such pooling strategies based
on the phenomenon that noise in the smooth region and blur
in the textured region do much more harm to the perceptual
quality. So we focus more on saliency region when image is
corrupted by blur, whereas pay more attention to non-saliency
region when the degradation is noise. For both conditions,
linear fusion is adopted because of its simplicity.

The last problem is the alignment of noisy and blurry
image’s free energy entropy. Image with more noise generally
has a larger free energy entropy, whereas it will be smaller for
image with a stronger blurriness. So we need to align them in a
common scale to assess the quality of noisy and blurry images
simultaneously. We adopt the following mapping function to

blurry images:
F = g(Fa)− Fp (7)

where F, Fp are free energy entropy of the blurry image after
and before alignment; g(∗) is a simple linear function.

Finally, quality of both blurry and noisy image can be
described by the fused free energy entropy F :

F =

{
k1Fb + k2Fbn if Fb > Fa
g(Fa)− (k1Fb + k2Fbs) otherwise (8)

where k1, k2 are weighting parameters; g(∗) is a linear func-
tion; Fa, Fb, Fbs , Fbn have been described above.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment settings

1) Testing databases: In our experiments, three popular
natural scene image databases and a recently released screen
content image database are used to evaluate the performance
of the proposed method. These four databases are LIVE [21],
Tampere Image Database 2013 (TID2013) [23], Categorical
Subjective Image Quality database (CSIQ) [22], and Screen
Image Quality Assessment Database (SIQAD) [7]. The num-
bers of noisy images in LIVE, CSIQ, TID2013 and SIQAD are
145, 150, 125, and 140, respectively. While, numbers of blurry
images in LIVE, CSIQ, TID2013 and SIQAD are 145, 150,
125, and 140, respectively. Thus 560 noisy images, 560 blurry
images, a total of 1120 images are used in the experiments.

2) Compared algorithms: We select several classical FR
IQA and recent general-purpose and distortion-specific N-
R/blind IQA methods for comparison. They are: 1) Two FR
IQA metrics, structural similarity index (SSIM) that com-
pares contrast, structural similarities and luminance [5] and
local-tuned-global (LTG) [6] which measures global quality
degradation, salient local distortions in luminance and chromi-
nance information; 2) Five general-purpose NR IQA metrics,
BRISQUE [28], NFERM [29], NIQE [30], IL-NIQE [31] and
SISBLIM [32]; 3) Five distortion-specific NR IQA models, S3
[16], FISH [17], FISHbb [18], ARISMc [?] and SINE [19].

3) Evaluation criteria: We adopt the video quality experts
group (VQEG)’s suggestion [27] and use four criteria to
compare the performance of the quality metrics. They are
Spearman rank order correlation coefficient (SRCC), Pearson
linear correlation coefficient (PLCC), Root mean square error
(RMSE), and Kendall’s rank correlation coefficient (KRCC).
PLCC and RMSE are used to evaluate the prediction accuracy.
SRCC and KRCC are used to evaluate the prediction mono-
tonicity. A good IQA method will produce a higher values
of SRCC, KRCC, PLCC, and a lower values of RMSE. In
our experiment, we adopt the four-parameter nonlinear logistic
function to map the prediction results x to the subjective
scores:

f(x) =
α1 − α2

1 + e
(x−α3)
α4

+ α2 (9)

where α1, α2, α3, α4 are the parameters to be fitted, f(x) and
x indicate the mapped score and the input score.



4) Testing process: We use both noise and blur subsets
as testing beds. Quality measures are required to evaluate
both distortions simultaneously. Quality scores of the distorted
images are computed in each database respectively. Then the
predicted scores are compared with the subjective scores to
judge the performance of the quality measure.

B. Experimental results

In Table I, the performances on the whole noise and blur
image subsets of four databases are presented. To facilitate
overall comparison, Table I also provides the direct average
and the database size-weighted average (compute the mean
values according to the size of each image subset, i.e., 290 for
LIVE, 300 for CSIQ, 250 for TID2013 and 280 for SIQAD)
performances for all compared measures. Since NFERM and
BRISQUE use LIVE database for training, we do not list their
performances on LIVE database and the average performances
for these two measures are computed over CSIQ, TID2013 and
SQIAD. We also do not compare the average RMSE values
because RMSE is highly related to the range of subjective
ratings.

From Table I, we can see that the proposed method is su-
perior to the compared general-purpose and specific-distortion
NR/blind IQA methods. Generally, NR/blind IQA measures
are not compared with FR IQA metrics. We can still observe
that the proposed BQISN model is even better than the FR
SSIM, while it is a little inferior to the FR LTG on average.
Furthermore, from a average perspective, the proposed BQISN
performs substantially better than the second best NFERM
measure according to all criteria except for PLCC.

IV. CONCLUSION

In this paper we put forward a novel training-free no-
reference quality metric (QM) for image sharpness and noise.
It is based on a unified brain theory - the free energy principle,
which tells that there always exists a difference between an
input true visual signal and its processed one by human brain.
The proposed method first computes the visual quality and
saliency between the real and processed signals via a semi-
parametric method that is constructed by combining bilateral
filter and auto-regression model. Afterwards, the computed
visual saliency and a new natural scene statistic (NSS) model
are used for modification to infer the final visual quality
score. Extensive experiments have been done to evaluate the
performance of the proposed BQISN across three popular
natural scene image databases and a recently released screen
content image database.The experiment results have proved the
effectiveness of the proposed blind quality measure compared
with classical and state-of-the-art full- and no-reference image
quality metrics.
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TABLE I
PERFORMANCE COMPARISONS OF 13 IQA MEASURES ON FOUR DATABASES. WE HIGHLIGHT THE TOP TWO NR MEASURES.

LIVE Noise and Blur Database (290 Images) [21]
Metrics SRCC KRCC PLCC RMSE

SSIM [5] 0.9115 0.7388 0.8865 11.008
LTG [6] 0.9736 0.8579 0.8927 7.2393

BRISQUE [28] training images
NFERM [29] training images

NIQE [30] 0.9283 0.7655 0.7891 8.6431
IL-NIQE [31] 0.9509 0.8130 0.8699 7.1303
SISBLIM [32] 0.9390 0.7918 0.7989 7.6708

S3 [16] 0.2089 0.0996 0.4857 16.521
FISH [17] 0.2332 0.1350 0.3456 16.203

FISHbb [17] 0.1961 0.0868 0.1441 16.816
ARISMc [18] 0.1193 0.0055 0.2484 24.318

SINE [19] 0.4155 0.3144 0.6773 15.960
BQISN (Pro.) 0.9472 0.7986 0.9199 8.3552

CSIQ Noise And Blur Database (300 Images) [22]
Metrics SRCC KRCC PLCC RMSE

SSIM [5] 0.8616 0.6603 0.7568 0.1477
LTG [6] 0.9657 0.8337 0.8888 0.0758

BRISQUE [28] 0.9076 0.7447 0.9302 0.0889
NFERM [29] 0.9024 0.7379 0.9260 0.0923

NIQE [30] 0.8396 0.6481 0.8657 0.1226
IL-NIQE [31] 0.8477 0.6641 0.7971 0.1121
SISBLIM [32] 0.8756 0.6978 0.8399 0.0965

S3 [16] 0.3081 0.2069 0.3878 0.1589
FISH [17] 0.3092 0.2095 0.5585 0.1502

FISHbb [17] 0.4022 0.2879 0.6835 0.2455
ARISMc [18] 0.2891 0.1923 0.2991 0.1455

SINE [19] 0.1301 0.1213 0.1302 0.2386
BQISN (Pro.) 0.8778 0.6935 0.8137 0.1122

TID2013 Noise And Blur Database (250 Images) [22]
Metrics SRCC KRCC PLCC RMSE

SSIM [5] 0.8036 0.5995 0.7761 0.65
LTG [6] 0.9326 0.7754 0.86 0.3879

BRISQUE [28] 0.8038 0.6225 0.7793 0.6068
NFERM [29] 0.8410 0.6531 0.8224 0.5736

NIQE [30] 0.6772 0.4673 0.6446 0.7908
IL-NIQE [31] 0.8148 0.6244 0.8391 0.5692
SISBLIM [32] 0.7527 0.5489 0.7657 0.6634

S3 [16] 0.3062 0.1759 0.3387 0.7051
FISH [17] 0.3029 0.1606 0.4752 0.7215

FISHbb [17] 0.4111 0.2702 0.6299 0.6952
ARISMc [18] 0.3405 0.2119 0.2345 0.6852
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